A novel cis-acting centromeric DNA element affects S. pombe centromeric chromatin structure at a distance

نویسندگان

  • L G Marschall
  • L Clarke
چکیده

The chromatin structure of the central core region of Schizosaccharomyces pombe centromeric DNA is unusual. This distinctive chromatin structure is associated only with central core sequences in a functional context and is modulated by a novel cis-acting DNA element (centromere enhancer) within the functionally critical K centromeric repeat, which is found in multiple copies in all three S. pombe centromeres. The centromere enhancer alters central core chromatin structure from a distance and in an orientation-independent manner without altering the nucleosomal packaging of sequences between the enhancer and the central core. These findings suggest a functionally relevant structural interaction between the enhancer and the centromeric central core brought about by DNA looping.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Centromeric Barrier Disruption Leads to Mitotic Defects in Schizosaccharomyces pombe

Centromeres are cis-acting chromosomal domains that direct kinetochore formation, enabling faithful chromosome segregation and preserving genome stability. The centromeres of most eukaryotic organisms are structurally complex, composed of nonoverlapping, structurally and functionally distinct chromatin subdomains, including the specialized core chromatin that underlies the kinetochore and peric...

متن کامل

cis-Acting DNA from Fission Yeast Centromeres Mediates Histone H3 Methylation and Recruitment of Silencing Factors and Cohesin to an Ectopic Site

BACKGROUND Metazoan centromeres are generally composed of large repetitive DNA structures packaged in heterochromatin. Similarly, fission yeast centromeres contain large inverted repeats and two distinct silenced domains that are both required for centromere function. The central domain is flanked by outer repetitive elements coated in histone H3 methylated on lysine 9 and bound by conserved he...

متن کامل

A Heterochromatin Barrier Partitions the Fission Yeast Centromere into Discrete Chromatin Domains

BACKGROUND Centromeres are cis-acting chromosomal domains that direct kinetochore formation, enabling faithful chromosome segregation. Centromeric regions of higher eukaryotes are structurally complex, consisting of various epigenetically modified chromatin types including specialized chromatin at the kinetochore itself, pericentromeric heterochromatin, and flanking euchromatin. Although the fe...

متن کامل

Visualization of centromeric and nucleolar DNA in fission yeast by fluorescence in situ hybridization.

The nucleolar and centromeric DNAs of the fission yeast Schizosaccharomyces pombe were visualized in the nucleus by fluorescence in situ hybridization using repetitive ribosomal and centromeric DNAs as the probes. The rDNAs were seen in the nuclear domain previously assigned as nucleolar, that is, the region into which the rod-like chromatin protrudes from the hemispherical chromosomal domain. ...

متن کامل

Investigating the Role of RNA Polymerase II in RNAi-dependent Heterochromatin Assembly at Centromeric Repeats

In Schizosaccharomyces pombe, a fission yeast, large domains of heterochromatin are found at telomeres, silent mating-type loci, and centromeric repeat regions of DNA (Bühler and Moazed, 2007). Much of the work done with S. pombe has shown that the assembly of heterochromatin around centromeric repeats depends on the coordination of two pathways: RNAi and histone modification. Current models su...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of Cell Biology

دوره 128  شماره 

صفحات  -

تاریخ انتشار 1995